Back to Jérôme's Paragliding page / Technique / Aerology.
The Role of Water
by Peter Gray
The article on thermal myths
briefly discusses a notion that has floated around (sorry) about water
being a good thing for making thermals, because water vapor is lighter than
air. Adapted from the article:
For example, a letter published in the April 2000 Hang Gliding magazine claims
that a benefit of plowed versus flat fields is that the “furrows allow moisture
to rise…and then vaporize.” ... “the heated water vapor will rise, not so much
because it is warmer but because water has a low molecular weight and is less
dense than the rest of the atmosphere.”
In fact, water vapor has less than 2/3 the density of air. To equal the
buoyancy of water vapor, we would need to heat an equal volume of air from 45°C
to 210° C! Sounds good, huh?
Yes, but evaporating a quantity of water requires 300 times more energy than
raising its temperature by one degree Fahrenheit. Creating 113 kg of air
buoyancy consumes about 8.2 million calories. Using the same energy to
evaporate water produces only 9.2 kg of lift, which makes water vapor less than
1/12 as effective! Also, the higher heat capacity of water vapor means that
more energy is needed to raise its temperature (and volume), so it is
about 13% less effective than air for producing lift after it evaporates. Yes,
humid air is somewhat more buoyant than dry air at the same temperature, but it
only reaches the same temperature at a tremendous energy cost—energy that could
have gone into far more efficient dry-air lift production.
Most pilots who blunder into areas that were doused by rain the day before soon
learn that wet ground, even under full direct sun, is not a good bet for
thermals, yet a good deal of argument about water persists. In a Dec. 23, 2001
post to the HangGlide@yahoogroups.com discussion group, Angus Pinkerton (Angus.Pinkerton@ntlworld.com)
wrote [my numbering added]:
Well, I hate to rain on such a noisy parade, but here are some facts about the
contribution of water vapour and temperature to the buoyancy of thermals.
1) In a paper originally published in the September 1995 issue of the Monthly
Weather Review, Nilton Renno and Earle Williams described the results of their
measurements of the temperature and water vapor contributions to thermal buoyancy
using a remote piloted vehicle and a tethered balloon.
In tropical conditions (
50% of the total thermal buoyancy.
2) In desert conditions (
In all cases, the thermal temperature excess is relatively small, about 0.4° C
in the tropics and 1.5° C in the desert.
3) I speculate that this variation in relative moisture may explain why the
better thermals are sometimes marked by wisps of cloud below generally flat
cloud bases and at other times by noticeably convex cloud bases.
From my point-by-point reply:
1) I don’t doubt that, but it does not imply that having lots of water around
is a good thing for total lift production. The distinction is subtle, but quite
important to XC soaring strategy. Another way to state the above observation
would be: “In tropical conditions, thermals are noticeably more humid than the
surrounding air.” This is no surprise, because in places like
BUT . . . again . . . this does not mean that evaporating water is a good way
to create lift, compared to heating air with the same amount of energy. In
fact, it is about 12 times worse, under typical atmospheric conditions. In
minor addition, water vapor is slightly (about 10%) worse than dry air
for conversion of solar energy to buoyancy because of its higher heat capacity.
CAVEAT: This discussion assumes that more lift production is always better. As
Davis Straub (http://www.davisstraub.com) and others have alluded, this
isn’t always the case. In
2) This isn’t surprising either, and the observation might be reworded: “Morning
thermals in the desert are damper than their surroundings, while in the
afternoon they are equally dry or slightly drier.” This is because dew falls at
night in the desert due to much lower temperatures than during the day. A
little morning sun drops the relative humidity and evaporates the dew into
incipient thermals (retarding their formation, by the way). Once all the
dew is gone, everything is more or less equally dry, except that very high
temperatures near the ground, esp. in bare, rocky areas that produce the most
thermals, make the air there even drier. As a side note, lack of water is one
big reason that deserts see much higher peak temperatures (and thus higher
lapse rates, climb rates, and cloudbases) than wet country at the same
latitude. All that water is a gigantic energy absorber.
3) I would extend this to say “Variations in relative humidity and temperature
must account for the hanging wisps, convexity, concavity, etc..” On several
occasions in